Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557496

RESUMEN

Programmed cell death protein 1 (PD-1) is an immune checkpoint marker commonly expressed on memory T cells and enriched in latently HIV-infected CD4+ T cells. We engineered an anti-PD-1 chimeric antigen receptor (CAR) to assess the impact of PD-1 depletion on viral reservoirs and rebound dynamics in SIVmac239-infected rhesus macaques (RMs). Adoptive transfer of anti-PD-1 CAR T cells was done in 2 SIV-naive and 4 SIV-infected RMs on antiretroviral therapy (ART). In 3 of 6 RMs, anti-PD-1 CAR T cells expanded and persisted for up to 100 days concomitant with the depletion of PD-1+ memory T cells in blood and tissues, including lymph node CD4+ follicular helper T (TFH) cells. Loss of TFH cells was associated with depletion of detectable SIV RNA from the germinal center (GC). However, following CAR T infusion and ART interruption, there was a marked increase in SIV replication in extrafollicular portions of lymph nodes, a 2-log higher plasma viremia relative to controls, and accelerated disease progression associated with the depletion of CD8+ memory T cells. These data indicate anti-PD-1 CAR T cells depleted PD-1+ T cells, including GC TFH cells, and eradicated SIV from this immunological sanctuary.


Asunto(s)
Linfocitos T CD4-Positivos , Receptores Quiméricos de Antígenos , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Linfocitos T CD4-Positivos/inmunología , Centro Germinal/inmunología , Infecciones por VIH/terapia , Macaca mulatta/metabolismo , Receptor de Muerte Celular Programada 1 , Receptores Quiméricos de Antígenos/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia
2.
Phys Chem Chem Phys ; 26(14): 10769-10783, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516907

RESUMEN

To effectively utilize MXenes, a family of two-dimensional materials, in various applications that include thermoelectric devices, semiconductors, and transistors, their thermodynamic and mechanical properties, which are closely related to their stability, must be understood. However, exploring the large chemical space of MXenes and verifying their stability using first-principles calculations are computationally expensive and inefficient. Therefore, this study proposes a machine learning (ML)-based high-throughput MXene screening framework to identify thermodynamically stable MXenes and determine their mechanical properties. A dataset of 23 857 MXenes with various compositions was used to validate this framework, and 48 MXenes were predicted to be stable by ML models in terms of heat of formation and energy above the convex hull. Among them, 45 MXenes were validated using density functional theory calculations, of which 23 MXenes, including Ti2CClBr and Zr2NCl2, have not been previously known for their stability, confirming the effectiveness of this framework. The in-plane stiffness, shear moduli, and Poisson's ratio of the 45 MXenes were observed to vary widely according to their constituent elements, ranging from 90.11 to 198.02 N m-1, 64.00 to 163.40 N m-1, and 0.19 to 0.58, respectively. MXenes with Group-4 transition metals and halogen surface terminations were shown to be both thermodynamically stable and mechanically robust, highlighting the importance of electronegativity difference between constituent elements. Structurally, a smaller volume per atom and minimum bond length were determined to be preferable for obtaining mechanically robust MXenes. The proposed framework, along with an analysis of these two properties of MXenes, demonstrates immense potential for expediting the discovery of stable and robust MXenes.

3.
Neurotherapeutics ; 20(6): 1779-1795, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37782409

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive loss of motor neurons in the spinal cord. Although the disease's pathophysiological mechanism remains poorly understood, multifactorial mechanisms affecting motor neuron loss converge to worsen the disease. Although two FDA-approved drugs, riluzole and edaravone, targeting excitotoxicity and oxidative stress, respectively, are available, their efficacies are limited to extending survival by only a few months. Here, we developed combinatorial drugs targeting multifactorial mechanisms underlying key components in ALS disease progression. Using data analysis based on the genetic information of patients with ALS-derived cells and pharmacogenomic data of the drugs, a combination of nebivolol and donepezil (nebivolol-donepezil) was identified for ALS therapy. Here, nebivolol-donepezil markedly reduced the levels of cytokines in the microglial cell line, inhibited nuclear factor-κB (NF-κB) nucleus translocation in the HeLa cell and substantially protected against excitotoxicity-induced neuronal loss by regulating the PI3K-Akt pathway. Nebivolol-donepezil significantly promoted the differentiation of neural progenitor cells (NPC) into motor neurons. Furthermore, we verified the low dose efficacy of nebivolol-donepezil on multiple indices corresponding to the quality of life of patients with ALS in vivo using SOD1G93A mice. Nebivolol-donepezil delayed motor function deterioration and halted motor neuronal loss in the spinal cord. Drug administration effectively suppressed muscle atrophy by mitigating the proportion of smaller myofibers and substantially reducing phospho-neurofilament heavy chain (pNF-H) levels in the serum, a promising ALS biomarker. High-dose nebivolol-donepezil significantly prolonged survival and delayed disease onset compared with vehicle-treated mice. These results indicate that the combination of nebivolol-donepezil efficiently prevents ALS disease progression, benefiting the patients' quality of life and life expectancy.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Ratones , Animales , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Donepezilo/uso terapéutico , Nebivolol/uso terapéutico , Nebivolol/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células HeLa , Calidad de Vida , Médula Espinal/metabolismo , Progresión de la Enfermedad , Modelos Animales de Enfermedad , Ratones Transgénicos , Superóxido Dismutasa/genética , Superóxido Dismutasa-1/genética
4.
J Immunother Cancer ; 11(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36627143

RESUMEN

BACKGROUND: Microphthalmia-associated transcription factor (MITF) is a master regulator of melanogenesis and is mainly expressed in melanoma cells. MITF has also been reported to be expressed in non-pigmented cells, such as osteoclasts, mast cells, and B cells. However, the roles of MITF in immunosuppressive myeloid cells, including myeloid-derived suppressor cells (MDSCs), remain unclear. Here, we investigated the role of MITF in the differentiation process of MDSCs during tumor development. METHODS: In vitro-generated murine MDSCs and primary MDSCs from breast cancer-bearing mice or lung carcinoma-bearing mice were used to determine the expression level of MITF and the activity of MDSCs. Additionally, we investigated whether in vivo tumor growth can be differentially regulated by coinjection of MDSCs in which MITF expression is modulated by small molecules. Furthermore, the number of MITF+ monocytic (MO)-MDSCs was examined in human tumor tissues or tumor-free lymph nodes by immunohistochemistry (IHC). RESULTS: The expression of MITF was strongly increased in MO-MDSCs from tumors of breast cancer-bearing mice compared with polymorphonuclear MDSCs. We found that MITF expression in MDSCs was markedly induced in the tumor microenvironment (TME) and related to the functional activity of MDSCs. MITF overexpression in myeloid cells increased the expression of MDSC activity markers and effectively inhibited T-cell proliferation compared with those of control MDSCs, whereas shRNA-mediated knockdown of MITF in myeloid cells altered the immunosuppressive function of MDSCs. Modulation of MITF expression by small molecules affected the differentiation and immunosuppressive function of MDSCs. While increased MITF expression in MDSCs promoted breast cancer progression and CD4+ or CD8+ T-cell dysfunction, decreased MITF expression in MDSCs suppressed tumor progression and enhanced T-cell activation. Furthermore, IHC staining of human tumor tissues revealed that MITF+ MO-MDSCs are more frequently observed in tumor tissues than in tumor-free draining lymph nodes obtained from patients with cancer. CONCLUSIONS: Our results indicate that MITF regulates the differentiation and function of MDSCs and can be a novel therapeutic target for modulating MDSC activity in immunosuppressive s.


Asunto(s)
Neoplasias de la Mama , Factor de Transcripción Asociado a Microftalmía , Células Supresoras de Origen Mieloide , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/patología , Diferenciación Celular , Factor de Transcripción Asociado a Microftalmía/genética , Células Mieloides/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Microambiente Tumoral
5.
Mol Pharm ; 19(11): 4286-4298, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36166409

RESUMEN

Poly(lactide-co-glycolide) (PLGA)-based microparticle formulations have been a mainstay of long-acting injectable drug delivery applications for decades. Despite a long history of use, tools and techniques to analyze and understand these formulations are still under development. Recently, a new characterization method was introduced known as the surface analysis after sequential semisolvent impact using sequential semisolvent vapors. The vapor-based technique is named, for convenience, surface analysis of (semisolvent) vapor impact (SAVI). In the SAVI method, discretely controlled quantities of selected organic semisolvents in the vapor phase were applied to PLGA microparticles to track particle morphological changes by laser scanning confocal microscopy. Subsequently, the morphological images were analyzed to calculate mean peak height (Sa), core height (Sk), kurtosis (Sku), dale void volume (Vvv), the density of peaks (Spd), maximum height (Hm), and the shape ratio (Rs). Here, the SAVI method was applied to naltrexone-loaded microparticles manufactured internally and Vivitrol, a commercial formulation. SAVI analysis of these microparticles indicated that the two primary mechanisms controlling the naltrexone release were the formation of discrete, self-crystallized portions of naltrexone within the PLGA structure and the degradation of PLGA chains through nucleophilic substitution. The relatively higher amounts of naltrexone crystals resulted in prolonged release than lower amounts of crystals. Data from gel permeation chromatography, differential scanning calorimetry, and in vitro release measurements all point to the importance of naltrexone crystal formation. This study highlights the utility of SAVI for gaining further insights into the microstructure of PLGA formulations and using SAVI data to support research, product development, and quality control applications for microparticle formulations of pharmaceuticals.


Asunto(s)
Naltrexona , Poliglactina 910 , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Rastreo Diferencial de Calorimetría , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula , Microesferas
6.
J Control Release ; 350: 600-612, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36057396

RESUMEN

Biodegradable poly(lactide-co-glycolide) (PLGA) microparticles have been used as long-acting injectable (LAI) drug delivery systems for more than three decades. Despite extensive use, few tools have been available to examine and compare the three-dimensional (3D) structures of microparticles prepared using different compositions and processing parameters, all collectively affecting drug release kinetics. Surface analysis after sequential semi-solvent impact (SASSI) was conducted by exposing PLGA microparticles to different semi-solvent in the liquid phase. The use of semi-solvent liquids presented practical experimental difficulties, particularly in observing the same microparticles before and after exposure to semi-solvents. The difficulties were overcome by using a new sequential semi-solvent vapor (SSV) method to examine the morphological changes of the same microparticles. The SASSI method based on SSV is called surface analysis of semi-solvent vapor impact (SAVI). Semi-solvents are the solvents that dissolve PLGA polymers depending on the polymer's lactide:glycolide (L:G) ratio. A sequence of semi-solvents was used to dissolve portions of PLGA microparticles in an L:G ratio-dependent manner, thus revealing different structures depending on how microparticles were prepared. Exposing PLGA microparticles to semi-solvents in the vapor phase demonstrated significant advantages over using semi-solvents in the liquid phase, such as in control of exposure conditions, access to imaging, decreasing the time for sequential exposure of semi-solvents, and using the same microparticles. The SSV approach for morphological analysis provides another tool to enhance our understanding of the microstructural arrangement of PLGA polymers. It will improve our comprehensive understanding of the factors controlling drug release from LAI formulations based on PLGA polymers.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Ácido Láctico/química , Microesferas , Tamaño de la Partícula , Poliglactina 910 , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Solventes/química
7.
Nano Lett ; 22(6): 2228-2235, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35235332

RESUMEN

Calcium-ion batteries (CIBs) are a promising alternative to lithium-ion batteries (LIBs) due to the low redox potential of calcium metal and high abundance of calcium compounds. Due to its layered structure, α-MoO3 is regarded as a promising cathode host lattice. While studies have reported that α-MoO3 can reversibly intercalate Ca ions, limited electrochemical activity has been noted, and its reaction mechanism remains unclear. Here, we re-examine Ca insertion into α-MoO3 nanoparticles with a goal to improve reaction kinetics and clarify the storage mechanism. The α-MoO3 electrodes demonstrated a specific capacity of 165 mA h g-1 centered near 2.7 V vs Ca2+/Ca, stable long-term cycling, and good rate performance at room temperature. This work demonstrates that, under the correct conditions, layered oxides can be a promising host material for CIBs and renews prospects for CIBs.


Asunto(s)
Calcio , Nanopartículas , Electrodos , Iones , Litio/química
9.
J Control Release ; 342: 53-65, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34971694

RESUMEN

Modern drug delivery technology began in 1952 with the advent of the Spansule® sustained-release capsule technology, which can deliver a drug for 12 h after oral administration through an initial immediate dose followed by the remaining released gradually. Until the 1980s, oral and transdermal formulations providing therapeutic durations up to 24 h for small molecules dominated the drug delivery field and the market. The introduction of Lupron Depot® in 1989 opened the door for long-acting injectables and implantables, extending the drug delivery duration from days to months and occasionally years. Notably, the new technologies allowed long-term delivery of peptide and protein drugs, although limited to parenteral administration. The introduction of the first PEGylated protein, Adagen®, in 1990 marked the new era of PEGylation, resulting in Doxil® (doxorubicin in PEGylated liposome) in 1995, Movantik® (PEGylated naloxone - naloxegol) in 2014, and Onpattro® (Patisiran - siRNA in PEGylated lipid nanoparticle) in 2018. Drug-polymer complexes were introduced, e.g., InFed® (iron-dextran complex injection) in 1974 and Abraxane® (paclitaxel-albumin complex) in 2005. In 2000, both Mylotarg™ (antibody-drug conjugate - gemtuzumab ozogamicin) and Rapamune® (sirolimus nanocrystal formulation) were introduced. The year 2000 also marked the launching of the National Nanotechnology Initiative by the U.S. government, which was soon followed by the rest of the world. Extensive work on nanomedicine, particularly formulations designed to escape from endosomes after being taken by tumor cells, along with PEGylation technology, ultimately resulted in the timely development of lipid nanoparticle formulations for COVID-19 vaccine delivery in 2020. While the advances in drug delivery technologies for the last seven decades are breathtaking, they are only the tip of an iceberg of technologies that have yet to be utilized in an approved formulation or even to be discovered. As life expectancy continues to increase, more people require long-term care for various diseases. Filling the current and future unmet needs requires innovative drug delivery technologies to overcome age-old familiar hurdles, e.g., improving water-solubility of poorly soluble drugs, overcoming biological barriers, and developing more efficient long-acting depot formulations. The lessons learned from the past are essential assets for developing future drug delivery technologies implemented into products. As the development of COVID-19 vaccines demonstrated, meeting the unforeseen crisis of the uncertain future requires continuous cumulation of failures (as learning experiences), knowledge, and technologies. Conscious efforts of supporting diversified research topics in the drug delivery field are urgently needed more than ever.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Sistemas de Liberación de Medicamentos , Humanos , Liposomas , Nanopartículas , SARS-CoV-2
10.
Front Genet ; 12: 763263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34819947

RESUMEN

Advances in single cell transcriptomics have allowed us to study the identity of single cells. This has led to the discovery of new cell types and high resolution tissue maps of them. Technologies that measure multiple modalities of such data add more detail, but they also complicate data integration. We offer an integrated analysis of the spatial location and gene expression profiles of cells to determine their identity. We propose scHybridNMF (single-cell Hybrid Nonnegative Matrix Factorization), which performs cell type identification by combining sparse nonnegative matrix factorization (sparse NMF) with k-means clustering to cluster high-dimensional gene expression and low-dimensional location data. We show that, under multiple scenarios, including the cases where there is a small number of genes profiled and the location data is noisy, scHybridNMF outperforms sparse NMF, k-means, and an existing method that uses a hidden Markov random field to encode cell location and gene expression data for cell type identification.

11.
J Am Chem Soc ; 143(43): 17937-17941, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34672550

RESUMEN

During redox reactions, oxide-supported catalytic systems undergo structural and chemical changes. Improving subsequent catalytic properties requires an understanding of the atomic-scale structure with chemical state specificity under reaction conditions. For the case of 1/2 monolayer vanadia on α-TiO2(110), we use X-ray standing wave (XSW) excited X-ray photoelectron spectroscopy to follow the redox induced atomic positional and chemical state changes of this interface. While the resulting XSW 3D composite atomic maps include the Ti and O substrate atoms and V surface atoms, our focus in this report is on the previously unseen surface oxygen species with comparison to density functional theory predictions.

12.
Mol Ther Methods Clin Dev ; 22: 304-319, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34485613

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies are being investigated as potential HIV cures and designed to target HIV reservoirs. Monoclonal antibodies (mAbs) targeting the simian immunodeficiency virus (SIV) envelope allowed us to investigate the potency of single-chain variable fragment (scFv)-based anti-SIV CAR T cells. In vitro, CAR T cells expressing the scFv to both the variable loop 1 (V1) or V3 of the SIV envelope were highly potent at eliminating SIV-infected T cells. However, in preclinical studies, in vivo infusion of these CAR T cells in rhesus macaques (RMs) resulted in lack of expansion and no detectable in vivo antiviral activity. Injection of envelope-expressing antigen-presenting cells (APCs) 1 week post-CAR T cell infusion also failed to stimulate CAR T cell expansion in vivo. To investigate this in vitro versus in vivo discrepancy, we examined host immune responses directed at CAR T cells. A humoral immune response against the CAR scFv was detected post-infusion of the anti-SIV CAR T cells; anti-SIV IgG antibodies present in plasma of SIV-infected animals were associated with inhibited CAR T cell effector functions. These data indicate that lack of in vivo expansion and efficacy of CAR T cells might be due to antibodies blocking the interaction between the CAR scFv and its epitope.

13.
Int J Pharm ; 602: 120627, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915188

RESUMEN

Poly(lactide-co-glycolide) polymers (PLGAs) have been used in many clinical formulations of injectable, long-acting formulations. Frequently, PLGAs having different lactide:glycolide (L:G) ratios, molecular weights (MWs), end-groups, and molecular structures have been used individually or in mixtures. To understand the properties of existing formulations made of PLGAs and to develop new formulations, understanding PLGA properties is essential. Yet, the separation of individual PLGA components from a mixture and their characterization has been challenging due to an incomplete understanding of PLGAs. This study focuses on separating PLGAs based on their molecular properties, such as L:G ratio, molecular weight, and comonomer sequence. The separation of PLGAs exploits the use of semi-solvents that dissolve only PLGAs having lactide contents (L%) above a certain threshold. More semi-solvents have been identified that show a specific transition L% between 50 and 100%. The mechanism study of semi-solvents indicates that semi-solvents, in general, prefer PLGAs with relatively higher L%, lower molecular weight, and higher G-L sequences as opposed to G-G sequences. The examination of a series of esters and ketones indicates that a solvent with lower molar volume is more effective as a semi-solvent. At a similar molar volume, esters are more effective than ketones in dissolving PLGAs with the same L:G ratio. The ability to separate and identify PLGA fractions allows better characterization of existing formulations and higher flexibility in designing new injectable, long-acting PLGA formulations.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Peso Molecular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Solventes
14.
J Clin Invest ; 131(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33630764

RESUMEN

To define the contribution of CD8+ T cell responses to control of SIV reactivation during and following antiretroviral therapy (ART), we determined the effect of long-term CD8+ T cell depletion using a rhesusized anti-CD8ß monoclonal antibody on barcoded SIVmac239 dynamics on stable ART and after ART cessation in rhesus macaques (RMs). Among the RMs with full CD8+ T cell depletion in both blood and tissue, there were no significant differences in the frequency of viral blips in plasma, the number of SIV RNA+ cells and the average number of RNA copies/infected cell in tissue, and levels of cell-associated SIV RNA and DNA in blood and tissue relative to control-treated RMs during ART. Upon ART cessation, both CD8+ T cell-depleted and control RMs rebounded in fewer than 12 days, with no difference in the time to viral rebound or in either the number or growth rate of rebounding SIVmac239M barcode clonotypes. However, effectively CD8+ T cell-depleted RMs showed a stable, approximately 2-log increase in post-ART plasma viremia relative to controls. These results indicate that while potent antiviral CD8+ T cell responses can develop during ART-suppressed SIV infection, these responses effectively intercept post-ART SIV rebound only after systemic viral replication, too late to limit reactivation frequency or the early spread of reactivating SIV reservoirs.


Asunto(s)
Antirretrovirales/farmacología , Linfocitos T CD8-positivos/inmunología , Depleción Linfocítica , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Activación Viral/inmunología , Animales , Linfocitos T CD8-positivos/patología , Femenino , Macaca mulatta , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Activación Viral/efectos de los fármacos
15.
J Control Release ; 329: 1150-1161, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33148404

RESUMEN

Injectable long-acting formulations, specifically poly(lactide-co-glycolide) (PLGA) based systems, have been used to deliver drugs systemically for up to 6 months. Despite the benefits of using this type of long-acting formulations, the development of clinical products and the generic versions of existing formulations has been slow. Only about two dozen formulations have been approved by the U.S. Food and Drug Administration during the last 30 years. Furthermore, less than a dozen small molecules have been incorporated and approved for clinical use in PLGA-based formulations. The limited number of clinically used products is mainly due to the incomplete understanding of PLGA polymers and the various variables involved in the composition and manufacturing process. Numerous process parameters affect the formulation properties, and their intricate interactions have been difficult to decipher. Thus, it is necessary to identify all the factors affecting the final formulation properties and determine the main contributors to enable control of each factor independently. The composition of the formulation and the manufacturing processes determine the essential property of each formulation, i.e., in vivo drug release kinetics leading to their respective pharmacokinetic profiles. Since the pharmacokinetic profiles can be correlated with in vitro release kinetics, proper in vitro characterization is critical for both batch-to-batch quality control and scale-up production. In addition to in vitro release kinetics, other in vitro characterization is essential for ensuring that the desired formulation is produced, resulting in an expected pharmacokinetic profile. This article reviews the effects of a selected number of parameters in the formulation composition, manufacturing process, and characterization of microparticle systems. In particular, the emphasis is focused on the characterization of surface morphology of PLGA microparticles, as it is a manifestation of the formulation composition and the manufacturing process. Also, the implication of the surface morphology on the drug release kinetics is examined. The information described here can also be applied to in situ forming implants and solid implants.


Asunto(s)
Preparaciones Farmacéuticas , Poliglactina 910 , Liberación de Fármacos , Tamaño de la Partícula , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
16.
IEEE Trans Vis Comput Graph ; 27(9): 3644-3655, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32191890

RESUMEN

Human-in-the-loop topic modeling allows users to explore and steer the process to produce better quality topics that align with their needs. When integrated into visual analytic systems, many existing automated topic modeling algorithms are given interactive parameters to allow users to tune or adjust them. However, this has limitations when the algorithms cannot be easily adapted to changes, and it is difficult to realize interactivity closely supported by underlying algorithms. Instead, we emphasize the concept of tight integration, which advocates for the need to co-develop interactive algorithms and interactive visual analytic systems in parallel to allow flexibility and scalability. In this article, we describe design goals for efficiently and effectively executing the concept of tight integration among computation, visualization, and interaction for hierarchical topic modeling of text data. We propose computational base operations for interactive tasks to achieve the design goals. To instantiate our concept, we present ArchiText, a prototype system for interactive hierarchical topic modeling, which offers fast, flexible, and algorithmically valid analysis via tight integration. Utilizing interactive hierarchical topic modeling, our technique lets users generate, explore, and flexibly steer hierarchical topics to discover more informed topics and their document memberships.

17.
Mol Pharm ; 18(1): 18-32, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33331774

RESUMEN

Poly(lactic-co-glycolic acid) (PLGA) has been used for long-acting injectable drug delivery systems for more than 30 years. The factors affecting the properties of PLGA formulations are still not clearly understood. The drug release kinetics of PLGA microparticles are influenced by many parameters associated with the formulation composition, manufacturing process, and post-treatments. Since the drug release kinetics have not been explainable using the measurable properties, formulating PLGA microparticles with desired drug release kinetics has been extremely difficult. Of the various properties, the glass transition temperature, Tg, of PLGA formulations is able to explain various aspects of drug release kinetics. This allows examination of parameters that affect the Tg of PLGA formulations, and thus, affecting the drug release kinetics. The impacts of the terminal sterilization on the Tg and drug release kinetics were also examined. The analysis of drug release kinetics in relation to the Tg of PLGA formulations provides a basis for further understanding of the factors controlling drug release.


Asunto(s)
Vidrio/química , Microplásticos/química , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Cinética , Tamaño de la Partícula , Temperatura de Transición
18.
AIDS Res Hum Retroviruses ; 36(12): 998-1009, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32988211

RESUMEN

The success of chimeric antigen receptor (CAR) T cell therapies for treating leukemia has resulted in a booming interest for the technology. Expression of a CAR in T cells allows redirection of their natural cytolytic activity toward cells presenting a specific designated surface antigen. Although CAR T cell therapies have thus far shown promising results mostly in B cell malignancy trials, interest in their potential to treat other diseases is on the rise, including using CAR T cells to control human immunodeficiency virus infection. The assessment of CAR T cell potency toward specific targets in vitro is a critical preclinical step. In this study, we describe novel assays that monitor the cytotoxicity of candidate CAR T cells toward simian immunodeficiency virus (SIV) infected CD4 T cells. The assays involve live cell imaging using a fluorescence microscopy system that records in real time the disappearance or appearance of targets infected with SIV carrying a fluorescent protein gene. The assays are highly reproducible, and their rapid turn around and reduced cost present a significant advance regarding the efficient preclinical evaluation of CAR T cell constructs and are broadly applicable to potential human diseases that could benefit from CAR T cell therapy.


Asunto(s)
Infecciones por VIH , Receptores Quiméricos de Antígenos , Virus de la Inmunodeficiencia de los Simios , Animales , Linfocitos T CD4-Positivos , Humanos
19.
ACS Appl Mater Interfaces ; 12(31): 34806-34814, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32643369

RESUMEN

The development of solid electrolytes (SEs) is a promising pathway to improve the energy density and safety of conventional Li-ion batteries. Several lithium chloride SEs, Li3MCl6 (M = Y, Er, In, and Sc), have gained popularity due to their high ionic conductivity, wide electrochemical window, and good chemical stability. This study systematically investigated 17 Li3MCl6 SEs to identify novel and promising lithium chloride SEs. Calculation results revealed that 12 Li3MCl6 (M = Bi, Dy, Er, Ho, In, Lu, Sc, Sm, Tb, Tl, Tm, and Y) were stable phase with a wide electrochemical stability window and excellent chemical stability against cathode materials and moisture. Li-ion transport properties were examined using bond valence site energy (BVSE) and ab initio molecular dynamics (AIMD) calculation. Li3MCl6 showed the lower migration energy barrier in monoclinic structures, while orthorhombic and trigonal structures exhibited higher energy barriers due to the sluggish diffusion along the two-dimensional path based on the BVSE model. AIMD results confirmed the slower ion migration along the 2D path, exhibiting lower ionic diffusivity and higher activation energy in orthorhombic and trigonal structures. For the further increase of ionic conductivity in monoclinic structures, Li-ion vacancy was formed by the substitution of M3+ with Zr4+. Zr-substituted phase (Li2.5M0.5Zr0.5Cl6, M = In, Sc) exhibited up to a fourfold increase in ionic conductivity. This finding suggested that the optimization of Li vacancy in the Li3MCl6 SEs could lead to superionic Li3MCl6 SEs.

20.
J Control Release ; 320: 484-494, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32027937

RESUMEN

Defining the qualitative sameness of parenteral formulations comprised of poly(lactide-co-glycolide) (PLGA) requires assays of the relevant properties of polymer from each formulation. Gel-permeation chromatography with quaternary detection (GPC-4D) has been previously applied to other polymers, and the relevant mathematical parameters for their characterization are available; however, such parameters have not been described for branched PLGA polymers. Little information is available for the determination of glucose within glucose-PLGA (Glu-PLGA) branched polymers. This study describes the experimental methods of defining the mathematical parameters for characterization of branched PLGA polymers and the validation of these parameters using known branched-PLGA standards. The glucose, used as an initiator, was tracked through the synthesis of Glu-PLGA by both 13C NMR and enzymatic analysis. The analytical determination of the relevant parameters defining Glu-PLGA, such as the branching number, and the presence of glucose, requires the use of appropriate procedures experimentally validated in a systematic manner. The procedures described in this study were developed for characterization of Glu-PLGA with the lactide:glycolide (L:G) ratio of 55:45 used in Sandostatin® LAR. The procedures can also be used for characterization of Glu-PLGAs made of different L:G ratios.


Asunto(s)
Glucosa , Poliglactina 910 , Cromatografía en Gel , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...